
UNIVERSITÀ DEGLI STUDI DI PADOVA

Reinforcement Deep Learning

Ziliotto Filippo
December 19, 2021

In this assignment we implement and test some neu-
ral networks to solve reinforcement learning prob-
lems. In particular, the CartPole-v1 environment is
solved training a Deep Q-Learning agent that accepts
as input the state representation provided by the en-
vironment. Finally another Deep Q-Learning agent
is trained to solve the LunarLander-v2 (the discrete
version with a state representation input).

1 INTRODUCTION

1 2Reinforcement learning tasks mainly consist of
training an agent A which interacts with an environ-
ment ε. Every action performed causes a change in
the state of the environment, which might either pe-
nalize or favor the agent assigning a reward. The
agent naturally seeks to maximize its reward, there-
fore needs to learn the optimal policy which results
in taking the best actions to obtain the largest re-
ward given it finds itself in a certain state. At ev-
ery timestep t , the agent A performs an action at

being in a given state st , receiving a reward rt for
it. The next state is denoted as st+1. Formally, the
goal of the agent is to maximize a total return Gt ,
which is weighted according to some discount fac-
tor γ ∈ (0,1), that quantifies how much A should care

1All the code and the related files can be found at https:
//github.com/ZiliottoFilippoDev/NNDL-21-22

2All the code and the related files can be found at https:
//gym.openai.com/envs/LunarLander-v2

about future rewards:

Gt = rt +γrt+1 +γ2rt+2 + ... =
∞∑
0
γk rt+k (1.1)

1.1 Gym Environment

OpenAI Gym is a toolkit for developing and com-
paring reinforcement learning algorithms, providing
several environments emulating classical problems
or old-fashion games. In our work we will try to
solve:

• Cartpole-v1: the goal is to balance a pole at-
tached to a cart, which can move without any
friction either left or right. The episode ends
when the pole falls, i.e. reaches an angle of
12ř with respect to the vertical, or is considered
“won” when 500 time steps have elapsed. We
can see it in 3.1.

• Lunarlander-v2: the goal is to make a star ship
land onto a landing pad located at the center
of the screen (x,y coordinates equal to 0). The
episode ends when either the starship crashes,
comes at rest or exits the screen.

2 METHODS

In Q-learning the agent A learns to associate a
value Q, known as long-term reward, to every

1

https://github.com/ZiliottoFilippoDev/NNDL-21-22
https://github.com/ZiliottoFilippoDev/NNDL-21-22
https://gym.openai.com/envs/LunarLander-v2
https://gym.openai.com/envs/LunarLander-v2


Ziliotto Filippo: 2017425 Neural Networks and Deep Learning 21/22

state-action pair Q(s, a) = E [Gt |s, a]. Actions per-
formed are sampled according to a policy, denoted
by (s), which needs to be learned in such way
that the actions chosen will come with the optimal
Q∗(s, a) = maxQ(s, a). The network therefore needs
to be able to learn Q∗, which obeys the Bellman
Equation. However, since computations for it are
too expensive and convergence might take too long,
one may want to exploit a Deep neural network
to directly approximate Q-values. The objective
function, to be minimized through gradient descent
algorithms, for this problem is:

L(θ) = Es,a,r,s′
[(

r +γmaxa′Q(s′, a′,θT )−Q(s, a,θ)
)2

]
(2.1)

where r is the reward, the second term refers to a tar-
get network whose task is to approximate Q(s, a,θ)
given the actual parameters and is trained at every it-
eration, and the third term refers to a policy network
updated every n steps and used for action selection.
The introduction of the target network allows for a
more stable training, and breaks the correlation be-
tween the target function and the Q-network.
In addition, in order to make the convergence oc-
curring faster thus improving efficiency, it has been
used experience replay. It basically acts as a buffer,
and allows the learning from past experience once
the network has gained “enough experience”. Prac-
tically, this has been implemented using deque ob-
jects.
The actions to perform can usually be chosen accord-
ing to either one of the following policies:

• ε-greedy policy: a non-optimal action is cho-
sen with probability ε, while the optimal with
probability 1−ε.

• softmax policy: the action is chosen according
to a softmax distribution of the Q-values, at a
certain temperature. Temperature usually de-
creases over time starting from a “large” value,
hence allowing at the beginning less theoreti-
cally favorable scenarios, while later choosing
most likely actions that are known to return the
largest Q-values.

3 CARTPOLE

Figure 3.1: Image displaying the info about the rep-
resentation space for the C ar tPole−v0 environment

Before proceeding with the description of the Target
and Policy networks, which is the same, one should
mention that the environment can be described us-
ing 4 quantities, namely (x ∈ [2.4,+2.4], v ∈ R,θ ∈
[15deg r ee,+15deg r ee],ω ∈ R). They are respec-
tively cart position, velocity, pole angle and pole an-
gular velocity.
The Target/Policy networks are implemented as it
follows:

• Input Layer: 4 units, having the input state 4
elements.

• First Hidden Layer: 128 units, Tanh activation
function

• Second Hidden Layer: 128 units, Tanh activa-
tion function

• Third Hidden Layer: 128 units, Tanh activa-
tion function

• Output Layer: 2 units, since the action can be
only left or right

3Before discussing the training, we should mention
that as optimizer it was chosen the SGD with no mo-
mentum to improve stability and with learning rate
102 . In addition, it has been selected the softmax
exploration policy, with the Temperature parame-
ter varying according to some function. In addition,
some Gaussian perturbations is introduce after the
game is solved to check how the exploration profile
relates to the score. The loss chosen for the problem
is the Huber Loss function. During the training, the

3All the code and the related files can be found at https:
//github.com/ZiliottoFilippoDev/NNDL-21-22

2

https://github.com/ZiliottoFilippoDev/NNDL-21-22
https://github.com/ZiliottoFilippoDev/NNDL-21-22


Ziliotto Filippo: 2017425 Neural Networks and Deep Learning 21/22

Figure 3.2: Final frame for the solved cartpole game.

agent receives a reward that is incremented by one
for every steps in which the pole has not fallen, or the
cart has not reached screen boundaries. Moreover, in
order to keep the cart as much “centered” as possi-
ble, a linear penalty is applied when the cart moves
away from the center. The assignment request is to
improve the convergence speed to a solution for the
C ar tPole environment. Thus, two metrics are de-
fined: the average score and the velocity. The first is
used with the idea that, the larger the average score,
the more stable should be the network in providing a
solution thus being able to maintain it “high”. On the
other hand, the velocity is defined as the first episode
at which the network is able to solve the game, i.e.
to reach a score of 500. If a given implementation is
never able to do it, this value is set to be equal to the
total number of episodes devoted to training: namely
1000.4

. With some different trials we searched for the best
parameters:

• pr o f i l et y pe: ’exponential’ being this quan-
tity the Temperature behavior in time

• Ti ni t i al : sampled uniformly between 2 and 7
• nupd ate : [5, 10] number of episodes every

which to update the policy network.
• γ: sampled uniformly ∈ [0.97, 0.99]

Finally the best parameters are set in 3.1 and Some
plots (3.3, 3.4) regarding this multi-parameter
optimization can be inspected. It is interesting to
see as the velocity parameter depends mainly on the

4All the code and the related files can be found at https:
//gym.openai.com/envs/LunarLander-v2

type of profile chosen for the Temperature and only
secondly on . Whereas, the average score gives more
importance to nsteps and secondly on .
Indeed one can see as the game can be solved thus
reaching 400 steps, with some stability of the score
later on. This network has been tested and some
videos of it are attached to this report. The network
might be able to solve the game even faster, but not
with a stable solution.

As said, the network has been optimized to make
convergence faster. With this parameters the net-
work converges in ∼ 400 epochs which is quite fast
w.r.t. to the normal implementation viewed in the lab
lecture.

Parameters Optimal value

Bad statepenal t y −20
TIni t i al 4
nupd ate 5

Exp. Decay 1
12

Table 3.1: Optimal parameters for the Q-network for
a ∼ 400 epochs convergence.

Figure 3.3: Score and temperature profile w.r.t. the
number of played games.

In addition to check how the exploration profile
changes, w.r.t. the temperature for the softmax ex-
ploration policy, when the game was already solved
i added a gaussian noise. We can see that when the

3

https://gym.openai.com/envs/LunarLander-v2
https://gym.openai.com/envs/LunarLander-v2


Ziliotto Filippo: 2017425 Neural Networks and Deep Learning 21/22

temperature is high the score decreases and the turns
to 500 (game solved) when the noise disappears.

Figure 3.4: Adding a guassian noise at the end of
the training to check how it changes the exploration
profile.

4 LUNARLANDER DISCRETE

As introduced before, the goal is to make the lander
land onto a landing pad that is always at coordinates
(0, 0) (see 4.1). The reward for moving from the top
of the screen to landing pad and zero speed is about
100, . . . , 140 points. If lander moves away from
landing pad it loses reward back. Episode finishes if
the lander crashes or comes to rest, receiving addi-
tional 100 or +100 points. Each leg ground contact
is +10. Firing main engine is 0.3 points each frame.
Solved is 200 points. Landing outside landing pad
is possible. Fuel is infinite, so an agent can learn to
fly and then land on its first attempt. Four discrete
actions are available: do nothing, fire left orienta-
tion engine, fire main engine, fire right orientation
engine. This is taken from the summary of the GY M
environments library. 56

The state returned by the environment consists of 8
variables, namely:

5All the code and the related files can be found at https:
//github.com/ZiliottoFilippoDev/NNDL-21-22

6All the code and the related files can be found at https:
//gym.openai.com/envs/LunarLander-v2

• X coordinate ∈ R
• Y coordinate ∈ R
• X velocity ∈ R
• Y velocity ∈ R
• Angle ∈ R
• Angular velocity ∈ R
• Left leg touching the ground (bool)
• Right leg touching the ground (bool)

Since dimensionality has changed, we double the
number of units of the second hidden layer with re-
spect to the implementation of the first network, and
change input and output accordingly:

• Input Layer: 8 units, having the input state 8
elements.

• First Hidden Layer: 256 units, Tanh activation
function

• Second Hidden Layer: 256 units, Tanh activa-
tion function

• Third Hidden Layer: 128 units, Tanh activa-
tion function

• Output Layer: 4 units, since the discrete action
set has cardinality 4.

The training is performed with different penalties be-
ing added to the reward: we want to penalise states
with large angle, since a “good” landing has null an-
gle, X coordinate to make the lander stay in the cen-
ter and finally Y coordinate to make it land in a faster
way. Also we applyed a linear penalty to the angle
state and the vy velocity state. All of this penalty
have different weights, the two state with the most
weights are the X coordinate and the angle. This be-
cause we want the lunar lander taking the straight
path from the top to the bootm also staying in the
right angle position.
The result for such search are visible in 4.2. It
has been decided to not proceed further, or to tune
“better” the values of such penalties, or even to
explore different Temperature profiles, due to the
large computational demand even for such simple
task. Some attempts were however performed intro-
ducing penalties on other variables or parametrizing
the actual ones in a different way but they were not
promising as the ones presented here. In 5.1 we can
see a frame were the lunar lander has failed in the
attempt to learn.

4

https://github.com/ZiliottoFilippoDev/NNDL-21-22
https://github.com/ZiliottoFilippoDev/NNDL-21-22
https://gym.openai.com/envs/LunarLander-v2
https://gym.openai.com/envs/LunarLander-v2


Ziliotto Filippo: 2017425 Neural Networks and Deep Learning 21/22

Figure 4.1: Final frame of the lunar lander network
when it has been solved.

Figure 4.2: This is the score w.r.t. the number of
epochs. We see that the solving takes time but after
a while the score and solving is consistent.

Further inspecting at the videos attached, it seems
like the ones with low score do not end up with the
lander crashing, rather than with the latter wasting
fuel to reach the central point. This might suggest
some more optimization is needed, though the train-
ing has been successfully performed: the lander is
now able to land onto the landing pad in most of the
cases without crashing. 7

5 APPENDIX

7All the code and the related files can be found at https:
//github.com/ZiliottoFilippoDev/NNDL-21-22

Figure 5.1: Funny example of a failing for the lunar
lander environment.

Figure 5.2: Another exploration of the score for the
lunar network. We see that with 200 epochs the net-
work does not converge yet.

5

https://github.com/ZiliottoFilippoDev/NNDL-21-22
https://github.com/ZiliottoFilippoDev/NNDL-21-22

