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Identity and Posture Recognition from Smart
Bed Pressure Data with Inception Based Deep

Network
Michele M. Crudele†, Filippo Ziliotto‡

Abstract—Together with other physiological activi-
ties, sleep has been shown to have a significant impact
on different aspects of human health. Monitoring sleep
posture can give valuable information not only to
improve sleep quality, but also to prevent diseases
such as pressure ulcers or sleep apnea. In this study,
we outperform the state of the art model in the
classification of both subjects and 17 different in-bed
postures, using a dataset made up of pressure maps
from 13 participants, collected with a smart bed. The
model we propose is built from scratch implementing
a simplified version of the GoogleNet, that makes use
of stacked inception blocks. When testing the model
on augmented data, an accuracy of almost 100% is
achieved in both classification tasks validating the
model with k-fold and an improvement of 10% w.r.t.
the state of the art is obtained with LOSO (Leave-
One-Subject-Out) cross-validation. This means that
our architecture is much robust to diverse and new
subjects’ pressure maps, making it a valuable model
to be integrated in clinical or smart home applications
for sleep posture monitoring.

Index Terms—Sleep Posture Monitoring, Smart
Bed, Pressure Maps, CNN Automated Feature Extrac-
tion, Multi-Output Classification, Inception Block.

I. INTRODUCTION
1 In the last few years an always higher inter-

est in human physiological activities has grown,
leading to the introduction of many different
devices with embedded sensors to monitor them.
Sleep is one of those activities, found to be
linked to various aspects of human physiology.
In particular, studies about in-bed posture have
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proved its key role in sleep quality and its high
influence on sleep diseases such as apnea [1]
or pressure ulcers [2]. That is why sleep posture
recognition can be beneficial for several medical
diagnosis or treatment plans.

The current main techniques to monitor sleep
make use of camera-based systems, in addition
to various body sensors that can be very un-
comfortable during sleep. They allow to collect
various data useful to many different diagnosis,
but require the patients to spend the night in
hospital. Moreover, cameras can suffer from low
illumination conditions, occlusions, as well as
bad viewpoint angle. Another issue to consider
is the violation of the privacy of the users, that
forbids to share this kind of data for public
use. All these problems can be solved using
pressure-based pose detection systems. In par-
ticular, commercial pressure sensing mattresses
have recently been introduced in the market,
allowing for smart home settings. Of course,
they can not replace sleep labs, but for sure they
represent a much more practical way to monitor
sleep. Indeed, different studies have exploited
pressure data to perform not only posture recog-
nition [3], [4], but also subject identification [5],
that might be very useful for the personalization
of smart home experiences; the previously cited
studies achieved very promising results, even if
all of them were limited to a few main sleeping
positions, i.e. supine, left, and right side. What
we know to be state of the art is reference [6],
whose CNN-based architecture achieved almost
100% accuracy in the identification of subjects
and classification of the three main postures.
Worse results were reached in the classifica-
tion of 17 different postures, especially when
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validating the model with LOSO scheme using
augmented data.

As a consequence, in this work we try to
achieve higher accuracy in the classification of
the 17 postures, building a model more robust
to new and more diverse data w.r.t. the one
proposed by [6]. To that end, we use the same
dataset as in [6] and we first feed it to different
standard networks, i.e. a Convolutional Neu-
ral Network (CNN), a CNN+Recurrent Neural
Netowrk (RNN) and a CNN+Long short-term
memory (LSTM). We then choose the best one
in terms of accuracy as a building block for
our own architecture, inspired by GoogleNet
[7]. All our models are validated using K-Fold
and LOSO schemes to obtain more realistic
estimates of their performance and are always
trained with augmented data to reduce overfit-
ting and increase their ability to generalize to
more diverse datasets. Differently, data augmen-
tation is used on the test set only to check the
performance of our final model and compare
the results with [6]. Posture and subject classifi-
cation tasks are always learned simultaneously,
since [6] showed this to improve the accuracy of
both tasks. In this way, we manage to provide
a deep learning architecture that would be more
suitable to be integrated in software to perform
a smart, user-tailored analysis of pressure data,
valuable for medical purposes too.

II. RELATED WORK

The recent introduction in the market of pres-
sure sensing mattresses allows for a much more
practical monitoring of sleep posture w.r.t. med-
ical tools. Reference [5] used commercial mats
to collect the first two publicly-available datasets
of pressure sensor data from 13 participants
in various sleeping postures. They were then
aggregated in three main positions (left, right
and supine) to perform a subject identification
with a dense network, trained separately for each
posture using 18 manually extracted statistical
features. Even if not optimal (the average accu-
racy was slightly above 80%), really promising
results were achieved, validating that individuals
do have a personal sleep pattern.

Those results were improved in [6], where
one of the dataset collected in [5] was fed
to a CNN-based architecture, in which both
subject and posture classification were learned
simultaneously, since this was proved to increase
the performance of both tasks. It achieved an
accuracy of 100% in the classification of the
three main positions (left, right and supine),
while obtaining worse results (87% accuracy)
with all the 17 different postures, especially
when augmented data were used for training
and testing (75.6% accuracy). Regarding subject
identification, accuracy was near 100% with the
original dataset, while around 90% with aug-
mented data. Those very good results in both
posture and subject classification highlight the
great value of pressure data, that can provide
very valuable information either in smart home
and clinical settings.

Given the already perfect accuracy achieved
in the classification of the three main positions,
in this work we focus on better classifying all the
17 different postures, in addition to the subjects.
We first show that RNNs and LSTMs does not
lead a CNN architecture to better performance.
Based on this result, we then build a more
complex inception-based model that achieves
significantly higher accuracy w.r.t. the state of
the art [6], either in subject identification and 17
postures recognition, especially when fed with
more diverse pressure maps from subjects not
included in the training set.

III. PROCESSING PIPELINE

Multitask learning has been successfully used
as a method of generalizing a classifier by
learning multiple tasks at the same time. Many
applications of machine learning exploited it,
such as natural language processing [8], speech
recognition and computer vision [9], [10]. For
our use case, its beneficial effect on the perfor-
mance has been shown in [6], so we use it in
our models too.

In the first phase of this work, we take the
model proposed in [6] as inspiration to build
three standard deep learning architectures, i.e.
CNN, CNN+RNN and CNN+LSTM, where the
first CNN blocks are always the same and are



3

used as automatic feature extractors. The goal is
to check if recurrent neural network, on top of
a CNN based model, could improve results.

In the second phase of the study, we exploit
the previous analysis to build our final much
more complex architecture, inspired by the in-
ception learning framework of GoogleNet [7],
that we implement from scratch in a simplified
version. The main idea behind it is to learn the
high, mid and low level features of data with
different inception blocks, in which convolutions
with filters of different sizes are used in parallel.
This type of architecture tends to get ”wide”
rather than ”deep”, making GPU training a lot
more efficient and faster. To prevent the gradient
from vanishing, the authors introduced auxiliary
classifiers in the middle of the architecture,
applying SoftMax to the outputs of the interme-
diate inception modules. This solution is com-
putationally too expensive to backpropagate with
our resources though. For this reason, we decide
to apply SoftMax for posture classification only
to the sum of the outputs coming from the three
inception blocks that we decide to implement. In
parallel, another SoftMax classifies the subjects
too. An illustration of the model we propose is
provided in Fig. 1.

IV. SIGNALS AND FEATURES

The public dataset we work with, PmatData
[5], is made up of 18698 pressure maps from 13
participants in 17 different postures. The age of
participators was 19-34 years, with a height and
weight of 170-186 cm and 63-100 Kg respec-
tively. Pressure data are collected using Vista
Medical Force Sensitive Application (FSA) Soft-
Flex 2048, a commercial mattress that con-
tains 2048 sensors uniformly distributed across
a 64(height)x32(width) grid, with sensors being
almost 1 inch apart from each other. Each sensor
is able to measure pressures reporting numbers
in the range of [0-1000], with a sampling rate of
1Hz. For each participant, 17 different files are
provided in tab delimited text format, each one
related to a specific posture. Each file contains
around 120 frames of recordings (∼ 2 minutes),
with 2048 columns representing the 64x32 pres-

Fig. 1: The architecture of our model. Three
convolutional blocks extract low, mid and high
level features that are then fed to dense layers.
For each level, a 17-neurons dense layer is
output. Eventually, they are added together and
two SoftMax are used in parallel to classify sub-
jects and posture. To reduce the computational
complexity and further encode the input along
the way, after every inception block a MaxPool
layer is introduced. For regularization, dropout
is used in the dense layers.

sure sensor measurements, and each row being
a frame.

In the pre-processing phase we remove the
first and the last three frames of each file, since
they often contain very noisy images. Then, we
remove 14 frames whose total sum of pixel
values is less than a specific threshold (found
after trial and error method). On the other hand,
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we also remove 2 frames that contain more
than 100 pixels whose value is greater than
1000, that is the maximum number a sensor can
register; they are artifacts caused by sensors that
are subjected to large pressure values outside
of the allowed voltage range. All the previous
16 frames contain very noisy, not significant
images, in which no subject posture is recogniz-
able. After that, some outliers are still present in
many images though. To deal with this, we apply
a 3x3x3 spatio-temporal median filter and then
we normalize the pixels dividing their values by
1000, since once again, that is the maximum
number a sensor can give. The type of the
filter is chosen with a trial and error procedure,
selecting the best type and size to reduce the
number of artifacts, still maintaining the general
aspect of the original frame. An example of the
effect of these operations is showed in Fig. 2.

Fig. 2: Illustration of the result of the median fil-
ter and normalization pre-processing functions.

Furthermore, we decide to always train our
models with augmented data, in order to im-
prove their ability to generalize to new and
more diverse datasets. Data augmentation is per-
formed almost in the same way as in [6], since
eventually we want to compare the results. We
rotate images up to ±30◦ (±25◦ in [6]) with a
probability of 20%. The same probability is used
to translate the frames up to ±10% along x and y
axis, while we rotate images by 180◦ with a 50%
probability. These operations are summarized in
Tab. 1.

Regarding feature extraction, it is always done
automatically using convolutional blocks, whose
architecture will be explained in Sec. V.

Finally, given the fact that the dataset is bal-
anced both in subjects and postures, we always
split it at random to obtain training and test
sets. The validity of this choice is confirmed by
the various iterations of the k-folds, that always
output very similar results. The proportion of
training and test sets depends on the validation
method: in the 10-fold the test set is 10% of
the dataset, while when validating with LOSO,
it depends on the number of frames associated
to the subject used for testing (∼ 8%).

Probability Process
50% Rotation by 180°
20% Rotation by up to ±30°
20% Horizontal shift by up to ±10%
20% Vertical shift by up to ±10%

TABLE 1: Data augmentation steps with relative
probabilities.

V. LEARNING FRAMEWORK

A. Model Architecture

In the first part of our work we compare
the performance of different deep models:
CNN, CNN+RNN and CNN+LSTM. We
do this to understand whether RNNs or
LSTMs could help a CNN architecture in
improving its performance. Inspired by [6],
in each of those three models we implement
the following CNN-based module, useful
to automatically extract significant features
from the input, that is a 64x32 image: 2
Convolutional-BatchNormalization-MaxPooling
blocks followed by 2 Convolutional-
BatchNormalization blocks. The convolution
kernels are 3x3 with a stride of 1 and the
number of channels doubles after every
convolutional block. ReLU activation function
is used after the Batch Normalization and before
the MaxPooling, whose kernel size is 2x2. The
output of this module is then fed directly to
dense layers in the CNN architecture, while
in CNN+RNN and CNN+LSTM, three RNN
and LSTM blocks with hyperbolic tangent
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activation function are respectively introduced
before the dense layers. After a dropout to
prevent overfitting, the signal is eventually sent
to two Dense layers for parallel classification
of posture and subject using SoftMax. These
two layers have 13 and 17 units, that are the
number of users and sleeping postures in the
dataset, respectively. The quantity of channels
in the first CNN block, the number of dense
layers and their neurons is chosen in such a
way to build 3 architectures with more or less
the same number of parameters (∼ 130′000), to
compare them fairly.

Our Model
Block Parameters

1st Module Inception 139’904
1st Module Dense 16’779’921

MaxPool (2x2)
2nd Module Inception 688’896
2nd Module Dense 8’391’313

MaxPool (2x2)
3rd Module Inception 2’754’048
3rd Module Dense 4’197’009

TABLE 2: Details of the parameters of our
architecture. The three modules learn three dif-
ferent levels of features. The total number of
parameters is 32′951′520. Each Dense block is
made up of three fully connected 32x1 layers
and a final 17x1 (one neuron for each posture)
layer.

With the results obtained in the first phase
of our work, we then develop our own more
complex and accurate architecture. It counts
about 33 millions parameters (Tab. 2) and is
inspired by the GoogleNet [7]. The just cited
network is made up of stacked Inception mod-
ules. Basically, each module is an image model
that aims to approximate an optimal local sparse
structure in a CNN. Put simply, it allows to
use multiple filter sizes instead of just one,
which we then concatenate and pass onto the
next inception layer [7]. The inception block we
use in our implementation is shown in Fig. 3.
Strides, padding and kernel filters are left the
same as [7]. To build to whole architecture,
we stack three inception blocks to extract three

Fig. 3: Inception block architecture implemented
throughout our network. Filters of multiple sizes
operate at the same level. 1x1 filters are useful
to limit the number of input channels before the
3x3 and 5x5 convolutions. The outputs are con-
catenated and sent to the next inception module.
We use three of these blocks in the architecture
we propose.

different feature types all along the network,
each one fed to a four-dense-layers module.
Each inception block has two times the number
of filters of the previous one, starting from the
256 filters in the low level (256 is given by the
concatenation of four 64-channels convolutions
in the first inception block). The outputs of
the 17-neurons Dense layers are then added
together and the 17 in-bed postures are classified
using SoftMax. In parallel, another SoftMax is
used in a 13-neurons Dense layer to classify
the 13 subjects. The whole learning framework
is shown in Fig. 1. It is interesting to notice
how the network is specifically designed to have
outstanding posture recognition performance: in-
deed, we use only the high level features to
identify the subjects, while we exploit also the
low and mid level ones for posture recognition.

The input dimension (64x32x1) is re-
duced throughout the whole network with a
MaxPool (2x2) layer after every inception block.
The choice of adding together the three feature
layers and not backpropagating them singularly
is a computational trade-off between complexity
and training time; in particular, this model trains
in ∼ 1 minute per epoch with a Colab GPU.

Due to lack of hardware resources, a rigor-
ous hyperparameters optimization is neglected.
Finally, all the layers share the same ReLU
activation function and we also add a Dropout of
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10% before the three 17-neurons fully connected
layers, to reduce the risk of overfitting.

B. Loss Function

For what concerns the loss function we stick
to the one implemented in [6] for a multi-output
classification. Basically it is a weighted sum of
the cross-entropy losses for both subject and
posture classifications. The sum is weighted by
a hyperparameter λ which is chosen to be 0.5
for k-fold and 0.2 for LOSO validation:

L = λLuser + (1− λ)Lposture,

where

Luser = −
M∑
j=1

γijlogP (γj|Ii) , (1)

Lposture = −
N∑
j=1

δijlogP (δj|Ii) . (2)

We consider a training set composed of tuples
(I, γ, δ, ), where I is the input pressure map, γ
and δ are the user and the corresponding posture
respectively. As stated before, the last layer
of the neural network consists of two softmax
activations placed in parallel with 13 and 17
units, that coincide with the number of users and
sleeping postures in the dataset, respectively.

We use a simple Adam optimizer across 15
and 10 training epochs in the k-fold and the
LOSO validation schemes respectively (training
for longer would result in useless computa-
tional time without significant improvements). A
ReduceOnPlateau scheduler with a factor of 0.5
is also applied every five increasing loss steps,
starting from 10−3 as initial learning rate.

VI. RESULTS

The results obtained in the state-of-the-art
work [6] with the same dataset we use in this
study are already optimal in the classification of
the three main in-bed postures, i.e. supine, left
and right side. As a consequence, in this study
we have focused on the classification of all the
17 postures collected in the dataset, in addition

to the identification of the subjects, since [6]
showed that learning both tasks simultaneously
is beneficial in terms of accuracy.

The first result of our study is about
the performance of three 130′000 parameters
architectures, namely CNN, CNN+RNN and
CNN+LSTM. In Tab. 3 and Tab. 4 we show
their percentage accuracy in the classification of
the 17 in-bed postures and the 13 subjects, re-
spectively. Subject classification is not possible
with LOSO, since data from one single subject
are used in the test set. From those tables, it is
possible to see that including RNNs or LSTMs
after the CNN blocks does not improve the
accuracy in both tasks. This is sensible, since
RNNs (and LSTMs) are thought for sequential
data, while we are dealing with static images.
As a consequence, we do not use them in our
final architecture.

17 IN-BED POSTURES ACCURACY (in %)
Architecture 10-fold LOSO

CNN 99.67± 0.37 80.1± 8.7
CNN + RNN 98.79± 2.19 74.3± 6.9

CNN + LSTM 94.97± 8.52 74.5± 9.5

TABLE 3: Accuracy of different architectures
(all with ∼ 130′000 parameters) for 17 postures
classification. LOSO is used with 50 epochs
training. The 10-fold is repeated 2 times training
for 30 epochs. Augmented data is used only for
training.

13 SUBJECTS ACCURACY (in %)
Architecture 10-fold

CNN 99.33± 2.11
CNN + RNN 98.6± 2.0

CNN + LSTM 92.56± 9.73

TABLE 4: Accuracy of different architectures
(all with ∼ 130′000 parameters) for 13 subjects
classification. The 10-fold is repeated 2 times
training for 30 epochs. Augmented data is used
only for training.

When tested on non-augmented data, our
inception-based model achieves a 100% accu-
racy both in 13 subjects and 17 postures clas-
sification with a 10-fold validation scheme. In
Fig. 4 we presents an example of the learning
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Fig. 4: Task specific accuracy as a function of
the number of epochs for our proposed model.

curves obtained during that procedure. It can be
seen that our model quickly learns both tasks
and converges to a steady state. Then, with
LOSO cross-validation it approaches 88% accu-
racy in posture classification (Fig. 5). This value
is only slightly higher than the one achieved in
[6] with the same validation scheme (Tab. 5),
but we stress once more the fact that we have
used augmented data for training, while 87%
accuracy was obtained in [6] by training with
original data. In this way, we have built a model
that is more robust to new and diverse data w.r.t.
[6].

Indeed, using augmented data also for test-
ing, the accuracy of our proposed architecture
decreases by only ∼ 2% both with k-fold and
LOSO, while it drops by ∼ 10% in [6], as shown
in Tab. 5 and Tab. 6. Overall, those tables show
that we have managed to build a model that
performs ∼ 10% better than the state-of-the-art
one in both tasks when testing it on augmented
data. In particular, the improvement in accuracy
obtained with LOSO suggests that our model
would be more robust to diverse data coming
from new subjects, making it more suitable to
be integrated in clinical or smart home settings.

The dataset we have worked with in this study
is almost perfectly balanced both in subjects
and postures, so the accuracy is a good metric
to analyze the performance. However, we have
checked also other metrics, i.e. precision, recall,
and F1-score, verifying that they were always
very similar to the accuracy and near 100%

17 IN-BED POSTURES ACCURACY (in %)
Architecture 10-fold (a.t.) LOSO LOSO (a.t.)
Our Model 98.6 87.7 85.4
Model [6] 93.2 87.0 75.6

TABLE 5: Our model compared to the one de-
veloped in [6]. ”(a.t.)” in column names means
that augmented data is used also for testing.

13 SUBJECTS ACCURACY (in %)
Architecture 10-fold 10-fold (a.t.)
Our Model 100 98.0
Model [6] 100 89.7

TABLE 6: Our model compared to the one
developed in [6]. The last column refers to the
case in which augmented data is used also for
testing.

Fig. 5: Confusion matrix of our model with the
LOSO validation scheme and data augmentation
only on the training set. Predicted labels are at
the bottom, true labels on the left. We see how
the majority of the misclassified sub-postures
fall within the correct main position (supine,
right, left).

when splitting the dataset in training and test
set at random.
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VII. CONCLUDING REMARKS

In-bed posture recognition can provide valu-
able information about different aspects of hu-
man physiology. In this work, a deep inception-
based architecture with three modules exploiting
different feature levels is proposed for the classi-
fication of identity and 17 in-bed postures, using
pressure maps collected with a smart bed. It is an
efficient and highly accurate model that learns
both tasks in parallel and significantly out-
performs the state-of-the-art architecture when
testing it on augmented data, achieving almost
100% accuracy with a 10-fold validation. A
10% improvement in the 17 postures recognition
accuracy is also obtained validating the model
with LOSO. This means that our model is more
robust to diverse data coming from subjects not
included in the training set, making it more
suitable to be exploited for actual use cases, in
clinical or smart-home settings.

Future works could focus on hyperparameters
optimization, that we have not performed rig-
orously due to hardware limitations. Moreover,
an architecture that classifies videos instead of
single frames could be implemented.
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