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In the era of big data, datasets are increasing in complexity and in dimensionality. For this reason,
data mining techniques are widely spreading, including visualization and clustering methods. In
this paper we present two unsupervised learning algorithms, one for data visualization (t-SNE)
and the other for data clustering (DBscan). These algorithms are indicated to extract patterns
and information from high-dimensional data. We test their behavoiur on three different datasets:
the first has a 5-dimensional knotted structure, while the others concerns binary data in 5 and 36
dimensions.

INTRODUCTION

In recent years managing and getting information
from large datasets has become fundamental in many
sectors. The process of extracting meaningful and
interesting patterns and characteristics from complex
datasets is named data mining, and includes different
analysis methods.
An important data mining technique is visualization,
which relies on capturing the qualitative structure
of high-dimensional data, projecting them in lower
dimensional space. In the last years has been intro-
ducted a nonlinear dimensionality reduction algorithm,
t-Distributed Stochastic Neighbor Embedding (t-SNE)
[1], which lends itself particularly to embedding high-
dimensional datasets. For this reason t-SNE has become
the standard for visualization in a wide range of applica-
tions, such as bioinformatics [2], cancer biology [3] and
computer security [4].
Another data mining technique is clustering. Data
clustering is an unsupervised learning technique based
on the classification of data in different groups, accord-
ing to points similarities. In this context, the DBscan
algorithm [5] is one of the most versatile clustering algo-
rithms used in many different fields, such as Web-based
social network analysis [6] and temperature detection
[7].
In this paper we analyze the behaviour of t-SNE and
DBscan algorithms [8], focusing on their performances
in high-dimensional and structural complex datasets.

t-SNE. The idea behind the t-SNE is to reduce the
dimensionality preserving the local structure of data, so
neighbour points in the original space will be neighbour
in the latent space and distant points will be distant.
This is done by defining a pi|j for each point in the orig-
inal space xi ∈ Rp:

pi|j =
exp(−||xi − xj ||2/2σi)∑
k 6=i exp(−||xi − xk||2/2σi)

(1)

which can be interpreted as the likelihood that xj is the
neighbour of xi (pi|i = 0). σi are free bandwidth pa-
rameters that adapt to the density of the data: smaller

values of σi are used in denser parts of the data space
and vice versa. They can be derived by fixing the local
entropy H(pi) = −

∑
j pj|i log2 pj|i and setting it equal

to a constant H(pi) = log2 Σ where Σ is the perplexity.
We define pij = (pi|j + pj|i)/2N .

T-SNE aims to find a map yi ∈ Rp′
(with p > p′) that

maintains the similarity pij as maximum as possible; to
do that we define a similar probability distribution qij on
the latent space:

qij =
(1 + ||yi − yj ||2)−1∑

k 6=i((1 + ||yi − yk||2)−1)
(2)

qij is a long-tail distribution that decrease more slowly
and has a lower maximum than the Gaussian used before.
In order to find yi, we compare qij and pij using the
Kullback–Leibler divergence:

DKL(p|q) =
∑
ij

pij ln(
pij
qij

) (3)

Since we want to keep the two distributions as closer as
possible, we minimize DKL using the gradient descent.
The derivative is:

∂iDKL =
∑
i 6=j

4pijqijZi(yi−yj)−
∑
i 6=j

4q2ijZi(yi−yj) (4)

with Zi = 1/
∑

k 6=i((1 + ||yi − yk||2)−1). We call the fist
term the attractive term and the second the repulsive
term. When pij > qij the attractive term is dominant,
thus yi and yk try to stay closer as possible; on the
contrary if pij < qij the repulsive term is dominant, so
yi and yk reject each other.
t-SNE can rotate data since DKL is invariant under
rotations on the latent space. In addition, the map yi
is stochastic because depends on the initial values of yi.
This algorithm is computational intensive O(N2) and can
be improved to O(N lnN) by approximating Equation 4.

DBscan. The main idea behind this technique is that
clusters are areas with high data density.
Considering data points X = {xi}Ni=1, we define xc a
core-point if:

]{xi ∈ X | d(xc, xi) < ε} < minPts (5)
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FIG. 1: (a) 5-dimensional non-binary dataset projected in the first three dimensions. The blue cluster is knotted
with the green one. (b) t-SNE applied on the first dataset into 2 dimensions with perplexity 20. The algorithm

separates very well the knotted structure seen in (a). (c) Distances between first nearest neighbours; the optimal
choice for ε is a point in the range [3500,6300] (zoomed orange part), or a multiple of that value. (d) t-SNE applied

to the binary 5-dimensional dataset. The algorithm is not able to recognize the different clusters very well in low
dimensions for binary datasets. (e) Distances between 30th nearest neighbours for the 5-dimensional binary dataset.

(f) t-SNE applied to the binary 36-dimensional dataset. Here we can visualize the clustered structure of the
transformation, confirming the good choice of t-SNE in high dimensions.

where d(·, ·) is the euclidean distance, ε is a parameter
and minPts is the minimum number of points to make
a cluster. A point xi is named directly-reachable from xc
if d(xc, xi) < ε, where xc is a core-point. The point xi
is reachable from xc if exist a set of points {xk}Mk=1 such
that xi is directly-reachable from xM . xk+1 is directly-
reachable from xk (∀k) and x1 is directly-reachable from
xc. At this point, starting from a core-point xc we define
cluster the set of all points that are reachable from xc.
Each cluster contains at least one core-point, and the non
core-point of the clusters are the edges of the clusters. If
a point is not directly-reachable from any core-point, it is
considered as noise.

METHODS

To test the behaviour of t-SNE and DBscan al-
gorithms, we perform an analysis on three different
datasets, that can be found at [9]. The first dataset we
consider has 5-dimensions, with 3 knotted clusters. The
other two, 5-dimensional and 36-dimensional, contain
binary features. These last are generated enforcing
bit sequences to label the data. We create the binary
5-dimensional dataset with the purpose of studying the
performances of the algorithms on binary data before
scaling in higher dimensions.
We first apply t-SNE to the datasets to visualize them
in the latent space. We set the perplexity parameter
between 5 and 50, as suggested in literature [1]. The
knowledge a priori of the number of clusters let us to
find the optimal Σ value. For what concerns the number
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FIG. 2: (a) NMI heatmap for different choices of the parameter ε and minPts of DBscan for the 5-dimensional
binary dataset. We see how there is a wide range of optimal parameter performing reasonably well. (b) Same graph

as (a), where here the NMI is calculated for the 36-dimensional binary dataset. Notice that increasing ε, minPts
decreases: the parameters have to be precisely tuned in order to find the best performances.

of iterations, the result of the algorithm, in most of the
cases, converges around ∼ 700 iterations.
To cluster the data we use DBscan algorithm. The ε
parameter is estimated computing the distances to the
first nearest neighbour. We plot the sorted distances
and we selected the value where the tangent changes
significantly. In all the datasets the optimal ε is a
multiple of this point. We choose the minPts by tuning
different values; the best results are related to the
structure of each dataset. The choice of the optimal
parameters is based on the scores of Normalized Mutual
Information (NMI [10]), which uses the true labels.
Eventually, we notice that it is useful to initialize DBscan
using t-SNE when dealing with complex datasets.
For the 36-dimensional binary dataset we test some
other clustering algorithms such as KMeans, agglomer-
ative clustering and spectral clustering [11], in order to
compare their performances with DBscan.

RESULTS

5-dimensional knotted dataset. The peculiarity
of this dataset is that the clusters are knotted (see
(Figure 1(a))), and we want to test how t-SNE and
DBscan handle this kind of data. We perform t-SNE in
a 2-dimensional latent space (Figure 1(b)), finding an
optimal visualization with a perplexity Σ = 20.
DBscan is able to identify the clusters for this data

with embedded manifolds, reaching an NMI value of 1
with a wide range of ε and minPts: ε ∈ [17000, 26000],
minPts ∈ [1, 8]. The optimal ε parameter is found
between 3 and 5 times the value suggested by the first
nearest neighbours plot, shown in Figure 1(c).

5-dimensional binary dataset. This dataset was
generated with 3 labels: each label corresponds to a
fixed sequence of the first three features, the last two
features are random. We notice that the visualization
with t-SNE is not efficient: the algorithm is not able
to divide the data in the 3 clusters, as can be seen in
Figure 1(d). This is due to the binary structure of the
data and the low dimensionality, e.g. changing one over
five bits changes radically the data position in the space.
Looking at DBscan results, it does not properly work on
the raw dataset, thus we initialize it with t-SNE.
In this case the performance of DBscan improves and
reaches a NMI of 73%. Furthermore, this result is
achieved with a wide range of ε and minPts, as shown
in Figure 2(a). This is related to the data structure:
the clusters created with t-SNE are very spread (see
Figure 1(d)), and thus we can enlarge the radius ε
without falling back into another cluster. In addition,
there are many identical points in the dataset: in the
latent space they overlap, and therefore minPts can vary
a lot without affecting the clustering. In this dataset the
first nearest neighbour distance is not indicative of the
optimal ε, because many points are overlapped. Instead,
one can consider as more indicative a nearest neighbour
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around the 30th (see Figure 1(e)).

36-dimensional binary dataset. To enlarge our
analysis in higher dimensions, we studied a 36 dimen-
sions binary dataset with five labels. It was generated in
a similar way as before, with the sequences length that
vary between 8 and 16 bits. t-SNE algorithm handles
well the data structure, grouping together points with
the same label Figure 1(f).
The most sparse cluster is related to the shortest fixed
sequence (8 bits). Also in this case we fitted DBscan
with the transformed t-SNE data. The results are shown
in Figure 2(b): we can see that the highest NMI val-
ues (88%) are placed on the diagonal of the heatmap,
because increasing the radius ε we expect to have more
points inside the cluster. However these high values of
NMI are limited over some specific pairs of (ε, minPts).
These good performances of DBscan are attributable to
the pre-processing done by t-SNE.
According to first nearest neighbors distances plot, we
find the optimal ε values within 5 times the value sug-
gested.
In order to have a more general approach we try other
clustering algorithms: KMeans, agglomerative clustering
and spectral clustering. All these algorithms perform well
also on the raw dataset, after the indication of the num-
ber of clusters needed. To evaluate it, we perform a sil-
houette analysis [12]. It turns out that the best number
of cluster is 5 with a silhouette coefficient value of 0.62,
in perfect agreement with the number of labels of the
dataset.
The results obtained are collected in Table I. We thus
can notice that on this dataset DBscan is not the optimal
choice for clustering.

NMI Raw t-SNE Time*

DBScan 44 95 18

KMeans 99 96 177

Agglomerative 92 96 12

Spectral 98 94 205

TABLE I: Results for different algoritmhs tested for the
high-dimensional binary dataset (for the raw data and
the projected t-SNE data). *Computational time (in

ms) of the algorithms is strongly dependent on the GPU
and dataset used. The idea is to give a rough ratio

estimate between the algorithms.

CONCLUSIONS

t-SNE algorithm is successful in the visualization of
a 5-dimensional embedded manifold dataset and a 36-
dimensional binary dataset. On the contrary, it encoun-
ters difficulties in dealing with a 5-dimensional binary
dataset because of its data structure (la spiegazione pre-
cisa deve stare nei results).
The performances of DBscan are good on a 5-dimensional
embedded manifold dataset. With a binary dataset, to
improve DBscan performances it is useful to initialize the
data with t-SNE. This procedure leads to good cluster-
ing results in both a 5-dimensional and a 36-dimensional
binary dataset. For future implementations, we suggest
to analyze more deeply the relation between DBscan and
binary datasets.
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