
Image colorization through CNN’s & Segmentation models

Monaco Saverio
SaverioMonaco@github.com

Ziliotto Filippo
ZiliottoFilippoDev@github.com

Abstract

Image colorization is a challenging topic of ongo-
ing reasearch in Computer Vision field and many
models have been developed in the past years to
tackle this problem. We take a greyscale image as
input and attempt to produce a coloring scheme.
The goal is to make the output image as realistic as
possible, although not necessarily the same as the
ground truth version. We use a feed-forward pass
in a Res-Net18 [2] building on top of it many de-
convolutional layers to upscale our features. For
general scenarios, we added a pretrained segmen-
tation model merging several trained weights for
each segmented part of the scene.
We show how a simplistic model (trained on dif-
ferent scene categories) can produce credible out-
puts in many types of scenes, requiring reasonable
computational hardware (w.r.t to the state-of-the
art mondels). The work is inspired by the known
papers from Iizuka et al.[4], Zhang et al.[8], and
Larsson et al.[5] on image colorization.

1. Introduction

In image colorization, we aim to automatically
generate a colored image from a grayscale input.
Any color photo can be used as a training example,
simply by taking the image’s L channel as input
and its ab channels as the supervisory signal [8].
Colorization poses a significant challenge to tradi-
tional computer vision techniques. This because a
single black-and-white image may have multiple
plausible colorizations (outputs). This ambiguity
makes it difficult to formulate an objective loss

Figure 1. Image colorization example in computer vi-
sion’s field. On the left we have out input image while
on the right the model’s expected prediction.

function to work with, and difficulty to improve
the work already done in literature. As such we
state that there is no one correct solution. For
instance, when comparing an image of a car that
is colored blue but appears red in the ground truth
image, results require subjective inspection. So
deciding whether an image is plausibly colored via
automated means is a problem nearly as difficult as
colorization itself. 1

1.1. Related work

Until recent years, automatic colorization was a
problematic task to achieve. In 2005 a paper [3]
described how human can actually suggest to the
computer which colors to fill in, but this process
still required heavy input by the user and this isn’t
part of the final (fully automatic) goal. Never-
theless recent work has produced vibrant, natural
coloured images with deep convolutional neaural
networks (CNNs).

1All the code, references, related work and additional mate-
rial of our project can be found at https://github.com/
SaverioMonaco/ImageColorization

1

https://github.com/SaverioMonaco/ImageColorization
https://github.com/SaverioMonaco/ImageColorization


Figure 2. our model’s architecture built from a Res-Net18 already implemented by Pytorch, and adding some deconvo-
lutional layers on top of it. Every convolutional layer is followed by a batch normalization and Relu layers. No pooling
layer is used.

In Zhang et al. [8] paper CNN’s are used to convo-
lute the image, here we use the same technique with
a ResNet-18 model (modifying the first layer to ac-
cepts grayscale input) and extracting the mid-level
features. We also add some deconvolution layers
to upsample the image. In [5] paper they combine
the mid-level feature extracted to the global ones by
employing hypercolumns, vectors of concatenated
features extracted from all levels of the network.
Here we try to keep thing as simple as possible to
show how a simpler model can still give plausible
results.
As for many papers [8] [4], for the ease of use we
also work in the LAB colorspace, which contains
the same information as the RGB channels.

1.2. Dataset

We train our model separately on different kinds
of datasets: the known Places365 [10], Caltech-
UCSD Birds-200 [7], Animals-10 2 and celeb-A
[6].
The choice of these datasets was done in order to
have a variety of different input images, showing
how our model behaved in different situations; e.g.
bird images have many dominant colors such as
blue, red, yellow, green, while faces have more or
less the same coloring scheme. In addition, train-
ing was done on a mixture of outdoor and indoor

2A basic kaggle dataset, which labels ten types of animals in
various scene configuration.

scenes, foreground and background subjects. The
datasets were all used in their integrity due to the
small size of memory usage they had, except for
Places365 and Celeb-a which only a small part was
taken for training.
Preprocessing was needed in order to have a train-
ing and a validation set. Of course large pretrained
models as ResNet-18 uses 256×256 input images
so a uniform cropping was applied, but we also
added some data augmentation (e.g. random crop-
ping and horizontal/vertical flipping) for general-
ization purposes. Due to the desaturated outputs
produced we slightly enhanced the training images
saturation.

1.3. Colorspace

Finally as a part of the preprocessing, we converted
RGB layers of each image into Lab colorspace pre-
serving all the overall colour information. In Lab
space, we have an ”L” layer which represents the
grayscale image, an ”a” layer that represents the
red-green color spectrum, and a ”b” layer that re-
lates to the blue-yellow color spectrum. The L layer
acts as the input to our model and the a,b layers
become the target image we want to infer, recom-
bining all three layers for the final result. From a
technical perspective, the L layer ranges from 0-
100, whereas the a,b layers are pixel values range
from 0-255 as usual.

2



Figure 3. Example input grayscale photos and output col-
orizations from our model. These examples are cases
where our model works especially well.

2. Method
We developed one colorization network with dif-
ferent training weights. This gave plausible outputs
only for certain scenarios. To further improve the
generalization of the model we added a pretrained
segmentation network merging the weights of the
various categories recognized in the scene.
The main idea leading the project was getting plau-
sible results even with an overall simple model.
Indeed, there are many other possible approaches
to the problem producing more color accurate out-
puts, but they require both deeper architectures and
larger datasets (e.g. Imagenet [1]) leading to ex-
ponentially more training time and perhaps more
powerful hardware.

2.1. Loss function

Given the input lightness channel ∈ RH×W×1 and
the two associated color channels ∈ RH×W×2 we
try to infer the learnable mapping Y = F (X),
where (H,W ) are image dimensions. We choose
the simple mean squared error loss function. The
benefit of using this loss function is in its simplic-
ity. In Lab colorspace the model’s perceptual dis-
tance it’s a natural objective function, i.e. the Eu-
clidean loss L2(·, ·) between predicted and ground
truth colors. So we can clearly measure the dis-
tance between the target pixel value and the pre-

dicted pixel output for each color layer.
To be fair we also tried other simple loss functions,
e.g. L1 loss, but the results were not as good.

L2(Ŷ , Y ) =
1

2

∑
h,w

∥∥∥Ŷh,w − Yh,w

∥∥∥2
2

The main drawback is that this loss in most cases
encourages conservative predictions[8]. For exam-
ple, it heavily penalizes picking green instead of
red, when either choices might be realistic (e.g. in
bird scenes). In color prediction, this averaging
effect favors grayish, desaturated results. This is
the reason for which some outputs are dominated
with a brown/green tint. As stated before, the core
problem is the multimodality of the color choice.
A further solution could be to integrate in the loss
function a classification term to include the seman-
tic prior [9] information we already have about a
certain picture, e.g. we know that the grass in the
majority of the cases is green.

2.2. Approach

Our approach is to first apply a number of convo-
lutional layers (from the ResNet-18 architecrure)
to extract image features, then applying some
deconvolutional layers to upscale. We didn’t freeze
the learning of the first part due to the fact that
it was trained for classification purposes (and of

Figure 4. Comparison between our model output and the
ground truth image. Here we see the multimodality prob-
lem of the colorization task.

3



Figure 5. Improving the model generalization by adding a pretrained segmentation architecture to apply the different
training weights to the segmented image (4th image). In this case we used three model weights related to people, birds
and backgrounds through the places dataset.

course it required RGB images), a very different
problem with respect to ours.
Performing the training on different datasets
resulted in having different models for each scene
type. Trying various learning rates we find that the
best was an adam optimizer with default values,
expect for the weight decay set to 0.001. We also
chose to have an adaptive step decay learning rate,
starting from lr = 10−2 to lr = 10−5 after about
50 epochs. Ultimately we settled on a batch size of
64.

3. Experiments

The training part was done with a multicore
32-CPU gear via CloudVeneto resources, but also
Google Colab GPU’s were used. Results varied
from the different scene types we trained on. The
best results are related to the celeb-A dataset, were
images are very similar and dominant colors (e.g.
pink/brown skin tone) remain more or less the
same. Here the model succeeded in predicting a
credible output (Fig.9). Good results are achieved
also for animal scenes, especially for foreground
on focus subjects (Fig.4). Concerning the places
dataset, results varied from having a good credible
image to a total lack of generalization in more
complex situations. On the other hand the model

does not reproduce the ground truth image for
bird scenes in the majority of the cases. These
poor results can be explained by the lack of a
sosphisticated enough model to represent the task
and a small-sized dataset to train on.
We compared our model with Eccv16[8] and
Siggraph17[9] in Fig.9. These are very complex
models trained on Imagenet [1]. Still ours managed
to compete in some cases (see comparison table
at the end). Another noticeable difference we
see is the difficulty in clearly predicting the non
identical color near the edges of the object, where
our model isn’t robust. It also seems to overfit the
training data sometimes, e.g. it produces greenish
trees even though the ground truth has bare trees
or produced green grass around the subject where
there’s arid land (Fig.9, elephant/place pictures)3.

In Fig.9 we show were our model fails to gen-
eralize effectively tending to predict desaturated
images w.r.t. the ground truth, resulting in a more
brownish image. The saturation enhancing on
the input images partially solved the problem,
this does depend on whether the model correctly
predicted the input image in the first place (i.e. bad

3Fig.9. Last page figure, a comparison between ours and the
models proposed by . In the first five comparison our model
succeeds to reproduce a credible output, while in the last two
cases it fails to generalize w.r.t. the other methods.

4



predictions still remain bad even after this process).

3.1. Improving the model

As it is showed in the last Table, our models
produces fairly credible outputs when the images
contain just one semantic subject, although it
generally fails when more than one are present.
This lack of generalization is due to the fact that
our models were trained with small and specific
datasets, due to hardware and time constrains.
Since our model performed well when applied to
specific images, our solution was to merge multiple
outputs of the same input image in the areas were
the model performed better.
Consider for example this image and his segmen-
tation map:

Figure 6. Input and segmentation map

The Segmentation model found that the image con-
tains human, bird, and background, the grayscale
image is then passed as input in the models trained
with those specific datasets, respectively human,
birds, and places.

Figure 7. Outputs of the models

In Figure 7 we show the outputs of the grayscale
image for the all the single models. As expected
they do not perform well when recoloring subjects
they were not trained with. With the assumption
that each model performs best in the area con-
taining the semantic subject they were trained for,
the final image is processed merging the parts
according to the segmentation map.

Since the image needs to be processed multiple

Figure 8. Merged output and Groundtruth

times, this technique is computationally less effi-
cient and performing than having only one model
trained with a larger and heterogeneous dataset
(e.g. ImageNet[1]). Given our constrains that
option could not be choosed, however our method
still manages to provide plausible results for many
complex images and it highly improves the results
for images generated without the merging (See
Fig.5).

4. Conclusion
Overall, we gained a newfound appreciation from
the challenge of producing realistic colorizations,
comparing our results with state-of-the-art ones
(Fig. 9). The Lab colorspace seems the best
choice to work with grayscale images. Our series
of convolutional neural networks is a good sim-
ple model to tackle the task but, adding a parallel
classifier could be a further implementation in or-
der to exploit the deep priors of the scenes[9]. A
good practice would be training on a large general
dataset, e.g. ImageNet [1], leading more general-
ized model. We also showed how adding a segmen-
tation network, merging the related weights to each
part of the scene, improves dramatically the output
for simple models tested in complex scenarios.
To summarise, while image colorization is a bou-
tique computer graphics task, it is also an instance
of a difficult pixel prediction problem in computer
vision. A deep CNN and a well-chosen objective
function can come closer to producing results in-
distinguishable from real color photos[8]. Our im-
plementation provides some what useful graphical
outputs in specific scenes still remaining as simple
as possible.

5



Input Eccv16 Siggraph17 Ours Ground truth

Su
cc

es
s

ca
se

s

———————- ———————- ———————- ———————- ———————-

Fa
ilu

re
ca

se
s

Figure 9.

6



References
[1] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and

L. Fei-Fei. ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR09, 2009.

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and
Jian Sun. Deep residual learning for image recog-
nition. CoRR, abs/1512.03385, 2015.

[3] Yi-Chin Huang, Yi-Shin Tung, Jun-Cheng Chen,
Sung-Wen Wang, and Ja-Ling Wu. An adaptive
edge detection based colorization algorithm and its
applications. pages 351–354, 01 2005.

[4] Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi
Ishikawa. Let there be Color!: Joint End-to-end
Learning of Global and Local Image Priors for
Automatic Image Colorization with Simultaneous
Classification.

[5] Gustav Larsson, Michael Maire, and Gregory
Shakhnarovich. Learning representations for auto-
matic colorization, 2017.

[6] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou
Tang. Deep learning face attributes in the wild. In
Proceedings of International Conference on Com-
puter Vision (ICCV), December 2015.

[7] P. Welinder, S. Branson, T. Mita, C. Wah, F.
Schroff, S. Belongie, and P. Perona. Caltech-UCSD
Birds 200. Technical Report CNS-TR-2010-001,
California Institute of Technology, 2010.

[8] Richard Zhang, Phillip Isola, and Alexei A Efros.
Colorful image colorization. In ECCV, 2016.

[9] Richard Zhang, Jun-Yan Zhu, Phillip Isola,
Xinyang Geng, Angela S Lin, Tianhe Yu, and
Alexei A Efros. Real-time user-guided image col-
orization with learned deep priors. ACM Transac-
tions on Graphics (TOG), 9(4), 2017.

[10] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude
Oliva, and Antonio Torralba. Places: A 10 mil-
lion image database for scene recognition. IEEE
Transactions on Pattern Analysis and Machine In-
telligence, 2017.

7


